Working with TensorFlow (AA-TTML6802)


Course Description

The abundance of data and affordable cloud scale has led to an explosion of interest in Deep Learning. Google has released an excellent open-source library called TensorFlow. This library allows for state-of-the-art machine learning at scale with GPU-based acceleration. This course explores algorithms, machine learning, data mining concepts, and how TensorFlow implements them.

Course Outline

Machine Learning and Deep Learning Overview

  • Mathematical Concepts
  • ML Overview
  • DL Overview

TensorFlow: Overview and Basics

  • TensorFlow: What is it? History and Background
  • Use cases and Key Applications
  • Machine Learning and Deep Learning Basics
  • Environment, Configuration Settings and Installation
  • TensorFlow Primitives
  • Declaring Tensors
  • Declaring Placeholders and Variables
  • Working with Matrices
  • Declaring Operations
  • Operations in Computational Graph
  • Nested Operations
  • Multiple Layers
  • Implementing Loss Functions
  • Implementing Back Propagation

Machine Learning With TensorFlow

  • Linear Regression Review
  • Linear Regression Using TensorFlow
  • Support Vector Machines (SVM) Review
  • SVM using TensorFlow
  • Nearest Neighbor Method Review
  • Nearest Neighbor Method using TensorFlow

Neural Networks With TensorFlow

  • Neural Networks Review
  • Optimization and Operational Gates
  • Working with Activation Functions
  • Implementing One-Layer Neural Network
  • Implementing Different Layers
  • Implementing Multilayer Neural Networks

Deep Neural Networks With TensorFlow

  • Models and Overview
  • Convolutional Neural Network Overview and Implementation
  • CNN Architecture
  • Recurrent Neural Network Overview and Implementation
  • RNN Architecture

Additional Topics

  • TensorFlow Extensions
  • Scikit Flow
  • TFLearn
  • TF-Slim
  • TensorLayer
  • Keras
  • Unit Testing
  • Taking your implementation to production

Course Objectives

Join an engaging hands-on learning environment, where you'll learn:

  • Core Deep Learning and Machine Learning math essentials
  • TensorFlow Overview and Basics
  • TensorFlow Operations
  • Neural Networks With TensorFlow
  • Deep Learning With TensorFlow

This course has a 50% hands-on labs to 50% lecture ratio with engaging instruction, demos, group discussions, labs, and project work.

Course Prerequisites

Before attending this course, you should have:

  • Strong Python Skills
  • Strong foundational mathematics in Linear Algebra and Probability; Matrix Transformation, Regressions, Standard Deviation, Statistics, Classification, etc.
  • Basic knowledge of machine learning and deep learning algorithms

 

Course Information

Length: 2 day

Format: Lecture

Delivery Method: n/a

Max. Capacity: 16



Schedule

Contact Us


Do you have more questions? We're delighted to assist you!

1-877-797-2799
info@firefly.cloud

Who Should Attend

Experienced Developers, Data Scientist, Data Engineer, and others who seek to work with machine learning algorithms, machine learning, and deep learning fundamentals and concepts.